which have low- and high-resonance frequencies, respectively; in both cases, the dominant factor in determining carbonyl fluxionality appears to be steric strain, which results from carbonyls on adjacent layers being eclipsed. This strain is relieved by carbonyl migration on an outer Rh_{4} or Rh_{3} face, respectively.

Acknowledgment. We thank the S.R.C. for a research fellowship (to L.S.) and also CNR/British Council for a grant (to P.C. and B.T.H.).

${ }^{\dagger}$ Deceased.

Brian T. Heaton,* Charles Brown, David O. Smith Luisella Strona
Chemical Laboratory, University of Kent Canterbury, CT2 7 NH, England
Robin J. Goodfellow
Inorganic Chemistry Department University of Bristol, BS8 1TS, England
Paolo Chini ${ }^{\dagger}$
Istituto di Chimica Generale dell' Università 20133-Milano, Italy
Secondo Martinengo
Centro del C.N.R. sui bassi stati di ossidazione 20133-Milano, Italy
Received June 2, 1980

Varying Selectivities of Triplet Ketones toward p-Cymene: A Measure of the Extent of Charge Transfer in Triplet Exciplexes

Sir:

We recently reported that triplet α-trifluoroacetophenone $\left(\mathrm{AF}_{3}\right)$ attacks p-cymene to yield primary and tertiary benzylic radicals in a 3.4:1 ratio, in contrast to the $1: 2.8 \mathrm{P} / \mathrm{T}$ ratio observed with acetophenone $\left(\mathrm{AH}_{3}\right)$ itself (eq 1). ${ }^{1}$ We ascribed the difference

PP
PT

TT
to the fact that hydrogen abstraction by triplet AF_{3} proceeds via an exciplex intermediate ${ }^{2}$ with substantial positive charge on the cymene. The 3.4:1 ratio could indicate an almost total lack of selectivity in exciplex H transfer, since it nearly equals the ratio of available benzylic hydrogens. We now find that the P / T radical ratio varies as a function of ring substitution on both AF_{3} and AH_{3}. The apparently random ratio with AF_{3} itself is just coincidental. More importantly, the P / T ratio serves as a unique probe of the extent of charge transfer in an exciplex.

Degassed benzene solutions containing various substituted ketones (0.05 M) and 0.5 M -cymene were irradiated at 313 nm until $2-15 \%$ of the ketone had reacted (eq 2). The relative amounts of the three substituted bibenzyl radical coupling products were determined by gas chromatographic analysis. ${ }^{1}$ The measured

[^0]
ratios are listed in Table I , as are the P / T radical ratios which would account for the product distributions. ${ }^{3}$

For both AF_{3} and AH_{3}, electron-withdrawing substituents increase the P / T ratio, and electron-donating substituents decrease it, with a given substituent having roughly twice as large an effect on AF_{3} as on AH_{3}. The effects can be related qualitatively to the degree of positive charge on the cymene in the exciplex formed with it as donor to triplet ketone, if it is accepted that high P / T selectivity results from positive charge density on the cymene. ${ }^{1}$ There are now many examples of kinetic acidity effects dominating exciplex decay. ${ }^{4}$ Unfortunately, as discussed earlier, ${ }^{1}$ it is not known what P / T ratio would result from free p-cymene radical cation, so we cannot yet put our results on a quantitative basis.

Table I also includes some rate constants for interactions of the triplet ketones with toluene, which we have reported elsewhere. ${ }^{5}$ For AF_{3}, there is a fourfold variation in P / T over a 10^{4}-fold variation in bimolecular rate constants for exciplex formation. ${ }^{6}$ Figure 1 compares how k and P / T vary with triplet reduction potential. There have been suggestions that the slopes of plots of $\log k$ vs. ΔG for electron transfer reveal the extent of electron transfer during exciplex formation. ${ }^{2.7}$ For example, in Figure 1 , the slope of $\log k$ vs. $E_{\text {red }}{ }^{*}$ is only $0.40 /$ room temperature. ${ }^{5}$ Slopes lower than 1 /room temperature definitely establish that the reaction does not involve complete one-electron transfer with the formation of metastable radical ions. ${ }^{8}$ However, it might be expected that the amount of charge separation in exciplexes formed from a common donor should vary with the reduction potential of the acceptor. Our present results, as plotted in Figure 1, provide the first experimental corroboration of this chemical intuition and indicate that linear plots of $\log k$ vs. ΔG do not demonstrate a constant degree of charge separation for all pairs plotted (e.g., 40% in the AF_{3}-toluene series).

Irradiation of 0.1 M di-tert-butyl peroxide in 0.6 M p -cymene produces the three bibenzyls in proportions which indicate a P / T ratio of $1: 2.7$, the same observed in the photoreduction of AH_{3}. This fact, together with a $k_{\mathrm{H}} / k_{\mathrm{D}}$ value of 3.3 observed in the quenching of acetophenone phosphorescence by toluene and toluene- $d_{8},{ }^{9,10}$ might suggest that triplet AH_{3} reacts with toluene by direct hydrogen atom abstraction. However, the substituent effects now observed on P / T ratios from AH_{3} indicate that the photoreduction of AH_{3} by alkylbenzenes generates partial positive charge on the alkylbenzene during hydrogen transfer. Given that the actual rate constant for quenching of triplet ketones by toluene correlates with toluene's oxidation potential, ${ }^{7 a}$ our present results suggest that the photoreduction of AH_{3} by alkylbenzenes proceeds from a reversibly formed exciplex with a small amount of CT, possibly in competition with direct hydrogen atom abstraction.

[^1]Table I. Benzyl Radical Coupling Products from Irradiation of Ring-Substituted AH_{3} and AF_{3} with $0.5 \mathrm{M} p$-Cymene in Benzene ${ }^{a}$

ketone	substit- uent	$\log k^{b}$	$\%$ $\mathrm{P}-\mathrm{P}$	$\%$ $\mathrm{P}-\mathrm{T}$	$\%$ $\mathrm{~T}-\mathrm{T}$	P / T
AH_{3}	$p-\mathrm{CH}_{3}$		c	0.38	0.62	0.30
AH_{3}	none	5.3^{d}	0.09	0.37	0.54	0.38
AH_{3}	$m-\mathrm{F}$		c	0.47	0.53	0.44
AH_{3}	$m-\mathrm{CF}_{3}$		c	0.51	0.49	0.53
AF_{3}	$p-\mathrm{OCH}_{3}$	4.7	0.31	0.45	0.24	1.2
AF_{3}	$p-\mathrm{CH}_{3}$	6.0	0.40	0.45	0.15	1.8
AF_{3}	$m-\mathrm{CH}_{3}$	6.4	c	0.81	0.19	2.1
AF_{3}	none	7.0	0.62	0.31	0.07	3.5
AF_{3}	$m-\mathrm{CF}_{3}$	9.0	0.70	0.30	c	4.7

${ }^{a} 0.05 \mathrm{M}$ ketone, irradiated at 313 nm , room temperature. ${ }^{b} \mathrm{Bi}-$ molecular rate constant for quenching by toluene in acetonitrile, ref 5. ${ }^{c}$ Not measurable. ${ }^{d}$ Giering, L.; Berger, M.; Steel, C. J. Am. Chem. Soc. 1974, 96, 953.

Figure 1. Correlation of rate constants and product ratios with excited ketone reduction potential for ring-substituted α-trifluoroacetophenones: (O) $\log (\mathrm{P} / \mathrm{T}$) from p-cymene; (\bullet) $\log k$ for quenching by toluene.

Figure 2. Partial potential-energy diagrams for triplet-state hydrogen abstraction by AH_{3} (top) and AF_{3} (bottom) from cymene. Reaction coordinate on left corresponds to CT complexation, that on right to H transfer from benzylic C to carbonyl O : (-) primary $\mathrm{H} ;(--)$ tertiary H ; (...) direct H abstraction by uncomplexed ketone triplet.

With AF_{3}, there is so much CT stabilization of the exciplex that proton transfer is no longer rate determining. Figure 2 compares the two situations.

We suspect that the low maximum quantum yields observed in ketone-toluene photoreductions reflect considerable exciplex
decay ${ }^{11}$ and are currently studying ketyl-benzyl radical-radical reactions to isolate chemical decay processes in photoreduction. ${ }^{12}$
(11) The opposite conclusion has just been reached for ketone-amine photoreductions: Inbar, S.; Linschitz, H.; Cohen, S. G. J. Am. Chem. Soc. 1980, 102, 1419.
(12) Generous continuing NSF support (Grant No. CHE79-10831) is acknowledged.

Peter J. Wagner,* Allen E. Puchalski
Chemistry Department, Michigan State University
East Lansing, Michigan 48824
Received April 11, 1980

A Chiral Synthesis of the Left-Side Aldehyde for Lasalocid A Synthesis ${ }^{1}$

Sir:
In a recent report ${ }^{2}$ from these laboratories, a total synthesis of the ionophore antibiotic lasalocid A (X537A) (1) was described. As in the first reported ${ }^{3}$ synthesis, this approach is based on the

4^{1}

2

3
aldol condensation between the aldehyde fragment 2 and the ketone polyether 3. At the time, only the ketone polyether 3 had been prepared in optically pure form, and while a new and efficient synthesis of the aldehyde 2 had been developed, only racemic material was available. The total synthesis, then, relied on the previously reported synthesis ${ }^{3}$ of the chiral aldehyde 2 and the demonstration ${ }^{3}$ that the aldol condensation successfully generated lasalocid A . The present report describes a chiral synthesis of the aldehyde 2 and demonstrates that the previously reported ${ }^{3}$ optical rotation of this material from synthetic and natural sources is incorrect.
A common intermediate in the two synthetic schemes is the bromopentene 10. Previously, ${ }^{3}$ the racemic acid 8 was resolved and subsequently transformed into the bromide $10,[\alpha]^{22}{ }_{D}-4.77^{\circ}$ (c $3.02, \mathrm{CH}_{3} \mathrm{OH}$). In the present work, both enantiomers 9 and 10 of this bromopentene were prepared independently from enantiomerically pure, naturally occurring (-)-citronellene (4), $[\alpha]^{25}{ }_{\mathrm{D}}-5.63^{\circ}\left(c 2.14, \mathrm{HCCl}_{3}\right)$ (Scheme I).
The bromide $9,{ }^{4}[\alpha]^{25}{ }_{\mathrm{D}}+32.7^{\circ}\left(c 2.74, \mathrm{CH}_{3} \mathrm{OH}\right)$, ultimately related to the unnatural enantiomer of the aldehyde 2, was derived from (-)-citronellene by conversion of the vinyl terminus to the acetate 6 and then degradation of the propylidene side chain through the acid 5 to the vinyl group. The resulting olefinic alcohol was converted to the bromide 9 by displacement of the derived mesylate.

[^2]
[^0]: (1) Wagner, P. J.; Puchalski, A. E. J. Am. Chem. Soc. 1978, 100, 5948.
 (2) Wagner, P. J.; Leavitt, R. A. J. Am. Chem. Soc. 1973, 95, 3669.

[^1]: (3) When all three hydrocarbons were measurable. $\mathrm{P} / \mathrm{T}=(\mathrm{PP} / \mathrm{TT})^{1 / 2}=$ $(2 \mathrm{PP}+\mathrm{PT}) /(\mathrm{PT}+2 \mathrm{TT})$. When either PP or TT was present in too small an amount to be measured accurately, or when other product peaks interfered with GC analysis. $\mathrm{P} / \mathrm{T}=2 \mathrm{PP} / \mathrm{PT}=\mathrm{PT} / 2 \mathrm{TT}$. These equations reflect the statistical coupling behavior of P and T radicals and the fact that the two alcohol products containing P and T obtained from AF_{3} display the same P / T ratio as measured from the hydrocarbon yields. ${ }^{1}$
 (4) (a) Cohen, S. G.; Stein, N. M. J. Am. Chem. Soc. 1971. 93, 6542. (b) Lewis, F. D.; Tong-Ing. H. Ibid. 1980, 102, 1751.
 (5) Wagner. P. J.: Lam, H. M. J. Am. Chem. Soc. 1980, 102, 4167
 (6) We are currently checking the assumption that the k values measure exciplex formation for the less reactive $A F_{3}$'s just as for $A F_{3}$ itself. ${ }^{2}$
 (7) (a) Guttenplan, J. B.; Cohen. S. G. J. Am. Chem. Soc. 1972. 94, 4040. (b) Loutfy, R. O.; Dogra, S. K.: Yip. R. W. Can. J. Chem. 1979, 57. 342. (8) Scandola, F.: Balzani, V. J. Am. Chem. Soc. 1979. 101, 6140.
 (9) Mueller. W. H.. unpublished results.
 (10) The primary isotope effect measured for tert-butoxy radicals is 5.25 : Walling, C.: McGuinness, J. J. Am. Chem. Soc. 1969, 91, 2053.

[^2]: (1) Support for this work from grants (HL-21367) from the National Heart and Lung Institute of the U.S. Public Health Service and the Hoff-mann-La Roche Foundation is gratefully acknowledged.
 (2) Ireland, R. E.; Thaisrivongs, S.; Wilcox, C. S. J. Am. Chem. Soc. 1980, 102, 1155-1157.
 (3) Nakata, T.; Schmid, G.; Vranesic, B.; Okigawa, M.; Smith-Palmer, T.; Kishi, Y. J. Am. Chem. Soc. 1978, 100, 2933-2935.
 (4) An alternate synthesis of enantiomer 9 from D-ribonic acid γ-lactone confirmed the stereochemical assignments when the same rotation for bromide 9 was observed: Fitzsimmons, B., unpublished experiments.

